## **A Tutorial** for the FHI-aims UK meeting

THE MSIP TEAM – Warwick – May 15, 2024



### Sebastian Kokott

Konstantin Lion Andrey Sobolev James Green Uthpala Herath Min-ye Zhang Volker Blum

## Overview How this tutorial is structured

- Two main sessions:
- A. Hybrid density functionals
- B. Beyond DFT: GW method for molecules and solids
- Each Session has two parts:
- 1. Focus Talk

### 2. Hands-on time – Feel free to ask questions, also unrelated

# PART A Hybrid Density Functionals

## **Density Functional Approximations (DFAs)** At which rung we stop today



### **Hybrid Density Functionals**

Meta-GGAs

Generalized-Gradients Approximations (GGAs)

Local Density Approximations (LDAs)

Jacob's Ladder of DFAs



## **Density Functional Approximations (DFAs)** At which rung we stop today



### **Hybrid Density Functionals**

Meta-GGAs

Generalized-Gradients Approximations (GGAs)

Local Density Approximations (LDAs)



Jacob's Ladder of DFAs

Mixing the (screened) DFA-exchange with some fraction of non-local Exact Exchange (exx)

 $E_x(\alpha,\beta,\omega) = \alpha E_{\text{exx}} + \beta E_{\text{exx}}^{\text{SR}}(\omega) + (1-\alpha)E_{\text{x-DFA}} - \beta E_{\text{x-DFA}}^{\text{SR}}(\omega)$ 

Mixing the (screened) DFA-exchange with some fraction of non-local Exact Exchange (exx)

 $\beta = 0$ : Global Hybrids

PBEO, PBEsolO, B3LYP, ...

 $E_x(\alpha,\beta,\omega) = \alpha E_{\text{exx}} + \beta E_{\text{exx}}^{\text{SR}}(\omega) + (1-\alpha)E_{\text{x-DFA}} - \beta E_{\text{x-DFA}}^{\text{SR}}(\omega)$ 

Mixing the (screened) DFA-exchange with some fraction of non-local Exact Exchange (exx)

$$E_x(\alpha,\beta,\omega) = \alpha E_{\text{exx}} + \beta E_{\text{exx}}^{\text{SR}}$$

 $\beta = 0$ : Global Hybrids

PBEO, PBEsolO, B3LYP, ...

 $\beta$  > 0: Range-separated/screened Hybrids HSEO6,  $\omega$ PBEh,  $\omega$ B97h, ...

 $E(\omega) + (1 - \alpha)E_{\mathbf{x}-\mathrm{DFA}} - \beta E_{\mathbf{x}-\mathrm{DFA}}^{\mathrm{SR}}(\omega)$ 

Mixing the (screened) DFA-exchange with some fraction of non-local Exact Exchange (exx)

$$E_x(\alpha,\beta,\omega) = \alpha E_{\text{exx}} + \beta E_{\text{exx}}^{\text{SR}}$$

 $\beta = 0$ : Global Hybrids

PBEO, PBEsolO, B3LYP, ...

 $\beta$  > 0: Range-separated/screened Hybrids HSEO6,  $\omega$ PBEh,  $\omega$ B97h, ...

 $E(\omega) + (1 - \alpha)E_{\mathbf{x}-\mathrm{DFA}} - \beta E_{\mathbf{x}-\mathrm{DFA}}^{\mathrm{SR}}(\omega)$ 

 $\alpha$  – long-range exx

 $\alpha + \beta$  – short-range exx

Mixing the (screened) DFA-exchange with some fraction of non-local Exact Exchange (exx)

 $E_x(\alpha,\beta,\omega) = \alpha E_{\text{exx}} + \beta E_{\text{exy}}^{\text{SR}}(\alpha,\beta,\omega) = \alpha E_{\text{exy}} + \beta E_{\text{exy}}^{\text{SR}}(\alpha,\beta,\omega) = \alpha E_{\text{exy}}^{\text{SR}}($ 

 $v(r) = v_{\rm SR}(r;\omega) + v_{\rm LR}(r)$ 

$$(\omega) + (1 - \alpha)E_{\text{x-DFA}} - \beta E_{\text{x-DFA}}^{\text{SR}}(\omega)$$

SHORT-RANGE LONG-RANGE

$$r;\omega) = \frac{\operatorname{erfc}(\omega r)}{r} + \frac{\operatorname{erf}(\omega r)}{r}$$

 $\alpha$  – long-range exx

 $\alpha+\beta$  – short-range exx



Mixing the (screened) DFA-exchange with some fraction of non-local Exact Exchange (exx)

$$E_x(\alpha,\beta,\omega) = \alpha E_{\text{exx}} + \beta E_{\text{exx}}^{\text{SR}}(\omega) + (1-\alpha)E_{\text{x-DFA}} - \beta E_{\text{x-DFA}}^{\text{SR}}(\omega)$$

 $v(r) = v_{\rm SR}(r;\omega) + v_{\rm LR}(r;\omega)$ 

Hybrid Functionals are a very flexible scheme!  $\alpha$  – long-range exx (That's good/bad)  $\alpha+\beta$  – short-range exx

SHORT-RANGE LONG-RANGE

$$;\omega) = \frac{\operatorname{erfc}(\omega r)}{r} + \frac{\operatorname{erf}(\omega r)}{r}$$



## **Practical Guide for Using Hybrids Hybrid** *≠* **Hybrid: HSE06 vs PBE0**



Hematite Fe2O3, anti-ferromagnetic



### Run on 2 nodes á 72 cores



64 water molecules in box

2.7x 41s Similar behavior for 15s Run on 5 nodes á 72 cores memory consumption XXX00 200 LUC 7

## Efficient evaluation of exact exchange in real space Localized Resolution-of-Identity approach (RI-LVL) [1,2]



[1] Ren, X., et al. New Journal of Physics 14.5 (2012): 053020. [2] Ihrig, A., et al. New Journal of Physics 17.9 (2015): 093020.



## Efficient evaluation of exact exchange in real space Localized Resolution-of-Identity approach (RI-LVL) [1,2]





## Efficient evaluation of exact exchange in real space Localized Resolution-of-Identity approach (RI-LVL) [1,2]



[1] Ren, X., et al. New Journal of Physics 14.5 (2012): 053020. [2] Ihrig, A., et al. New Journal of Physics 17.9 (2015): 093020.





# RI-LVL enables O(n\_atoms)



[1] Ren, X., et al. New Journal of Physics 14.5 (2012): 053020. [2] Ihrig, A., et al. New Journal of Physics 17.9 (2015): 093020.





## **Hybrid Functionals in FHI-aims Benefits of the RI-LVL implementation**

- Available for non-periodic and periodic structures
- Affordable (still not cheap);
- O(n\_atoms) algorithm: Simulations up to ~30k atoms
- Integration with libxc: find you favorite hybrid functional

## Practical Guide for Using Hybrids **Complexity of the Exact Exchange Algorithm**



### Use scaling behavior to estimate computational resources from smaller units

**CPUs only!** 



- - Facilitate data redistribution via one-sided MPI routines; e.g. Coulomb matrix

**CPUs only!** 

MPI-3 intra-node shared memory arrays (see talk Christian Carbogno)



- MPI-3 intra-node shared memory arrays (see talk Christian Carbogno)
  - Facilitate data redistribution via one-sided MPI routines; e.g. Coulomb matrix
- Compression of the RI-coefficients
  - Same screening mechanism as for Coulomb matrix (2015)

**CPUs only!** 



- MPI-3 intra-node shared memory arrays (see talk Christian Carbogno)
  - Facilitate data redistribution via one-sided MPI routines; e.g. Coulomb matrix
- Compression of the RI-coefficients
  - Same screening mechanism as for Coulomb matrix (2015)
- Several auto-tuning mechanisms
  - Minimize communication, maximize memory/node usage

**CPUs only!** 



- MPI-3 intra-node shared memory arrays (see talk Christian Carbogno)
  - Facilitate data redistribution via one-sided MPI routines; e.g. Coulomb matrix
- Compression of the RI-coefficients
  - Same screening mechanism as for Coulomb matrix (2015)
- Several auto-tuning mechanisms
  - Minimize communication, maximize memory/node usage
- Additional parallelization layers

**CPUs only!** 

- Finer granulation on the level of basis functions (previously: on the level of atoms)



## **Workflow Overview** Initialization

### $\mathbf{X} = \mathbf{C} \cdot \mathbf{V} \cdot \mathbf{C}' \cdot \mathbf{D}$

**Instance:** everything that is needed to compute a row of the Fock matrix X:

- Coulomb Matrix C
- RI Coefficients V
- Communicators
- Several index arrays

The total number of instances needs to Be divisor of the number of nodes

Kokott, Merz, *et al.*, arXiv:2403.10343 (2024)

### Compute Workflow

### Data Layout



### **Workflow Overview** SCF iterations

### $\mathbf{X} = \mathbf{C} \cdot \mathbf{V} \cdot \mathbf{C}' \cdot \mathbf{D}$

**Block:** Rows of the Fock matrix X

Kokott, Merz, et al., arXiv:2403.10343 (2024)



1,503-atom calculation, 1x1x1 k-grid, ran on 16 nodes à 72 MPI tasks

Assumed free memory per node for Fock matrix prefactors [GB] 185.59 Memory per instance for Coulomb / ovlp matrix [GB] 252.76 589.20 Number of nodes, tasks per node 16 72 Number of instances: 2





1,503-atom calculation, 1x1x1 k-grid, ran on 16 nodes à 72 MPI tasks

Assumed free memory per node for Fock matrix prefactors [GB] 185.59 Memory per instance for Coulomb / ovlp matrix [GB] 252.76 589.20 Number of nodes, tasks per node 16 72 Number of instances: 2

How much assumed free memory we have in total: n\_nodes x 185.59 GB = 2,969.44 GB Ratio 2,969.44/841.96  $\approx$  3 How much memory per instance we need: M\_Coulomb + M\_OVLP = 841.96 GB





1,503-atom calculation, 1x1x1 k-grid, ran on 16 nodes à 72 MPI tasks

Assumed free memory per node for Fock matrix prefactors [GB] 185.59 Memory per instance for Coulomb / ovlp matrix [GB] 252.76 589.20 Number of nodes, tasks per node 16 72 Number of instances: 2

How much assumed free memory we have in total: n\_nodes x 185.59 GB = 2,969.44 GB

How much memory per instance we need: M\_Coulomb + M\_OVLP = 841.96 GB

### MINIMAL NODE SETUP ESTIMATION

Calculation is likely to run on **8 nodes** 

Ratio 2,969.44/841.96 ≈ 3





1,503-atom calculation, 1x1x1 k-grid, ran on 16 nodes à 72 MPI tasks

Assumed free memory per node for Fock matrix prefactors [GB] 185.59 Memory per instance for Coulomb / ovlp matrix [GB] 252.76 589.20 Number of nodes, tasks per node 16 72 Number of instances: 2

How much assumed free memory we have in total: n\_nodes x 185.59 GB = 2,969.44 GB

How much memory per instance we need: M\_Coulomb + M\_OVLP = 841.96 GB

### MINIMAL NODE SETUP ESTIMATION

Calculation is likely to run on **8 nodes** 

Ratio 2,969.44/841.96 ≈ 3

### **BEST SETUP IN A SIMILAR NODE RANGE**

15 nodes will allow to open 3 instances





## **Practical Guide for Using Hybrids** How to tune your Hybrid Functional Simulation

- FHI-aims tries to auto-tune your setup
  - Number of instances, Fock matrix block size, Number of Fock matrix blocks per node
- Defaults are chosen rather conservatively
  - Try to avoid out-of-memory runs
- Possibly gain another ~20% speed-up when manually tuned

## **Practical Guide for Using Hybrids** How to tune your Hybrid Functional Simulation

Set the number of instances per node

fock\_matrix\_nodes\_per\_instance INTEGER INTEGER has to be a divisor of number of nodes

Set the Fock matrix block size

fock\_matrix\_blocking INTEGER

INTEGER should be smaller than 100

Limit the number of available memory per node

fock\_matrix\_max\_mem\_per\_node FLOAT

## **Efficient Workflows for Hybrid functionals** (May not always apply to your system)

- GGA relaxation with light species defaults
- 2. Follow-up relaxation with Hybrid Functional (forces + stress) with intermediate defaults
- 3. Band structure calculation with intermediate species defaults

Try it yourself with Tutorial Basics Of Running FHI-aims: Part 3



## Where to find the material

Go to fhi-aims.org

### FHI-aims version (special release)

- Download fhi-aims.240507 or git checkout 240507
- Compile FHI-aims

### **Online Tutorial Material**

- Click Online tutorials
- Select: Basics of Running FHI-aims
  - ► Part 3

# PART B

# GW method for molecules and solids